City Subscribers (FB+App) | Website (Direct+Google) | Total | ||
1817 | 1085 | 2902 |
***Scroll down to the bottom of the page for above post viewership metric definitions
माना जाता है कि, “दुनिया में एक ही चीज स्थिर है, जिसे परिवर्तन या बदलाव के रूप में जाना जाता है।” समय से लेकर जलवायु तक और तापमान से लेकर शेयर बाज़ार (Share Market) तक सब कुछ परिवर्तनशील है। हालांकि, कुछ बदलावों को रोकना संभव नहीं है, लेकिन सोचिए कैसा हो यदि आप भविष्य में होने वाले बदलावों का सटीक आंकलन कर पाएं ? जी हां, गणित में बदलावों का अध्ययन करने के लिए एक समर्पित शाखा है, जिसका नाम है "कलन या कैल्क्युलस ।
कलन (Calculus) गणित की एक प्रमुख शाखा है, जिसमें परिवर्तन का गणितीय अध्ययन किया जाता है। इसकी दो मुख्य शाखाएँ अवकल गणित तथा समाकलन गणित हैं। वर्तमान समय में विज्ञान, अभियांत्रिकी , अर्थशास्त्र आदि के क्षेत्र में कैल्क्युलस का उपयोग किया जाता है। सरल शब्दों में, कलन गणित की एक ऐसी शाखा है जो परिवर्तन की दरों से संबंधित है। उदाहरण के लिए: यदि आप लाल बत्ती पर रुकने वाली कार के वेग में परिवर्तन की गणना करना चाहते हैं, तो कैल्क्युलस / आपको उस बदलाव का पता लगाने में मदद कर सकता है। हालांकि, कैल्क्युलस के आविष्कार पर कई दशकों से बहस होती रही है कि कैल्क्युलस के आविष्कार का श्रेय किसे दिया जाना चाहिए। अंग्रेजी वैज्ञानिक सर आइज़ैक न्यूटन (Sir Isaac Newton) और जर्मन दार्शनिक गॉटफ्रीड लाइबनिज (Gottfried Leibniz) दोनों ने दावा किया कि उन्होंने 17वीं शताब्दी के अंत के आसपास कलन का आविष्कार किया था।
कैल्क्युलस के विकास में अति सूक्ष्म राशि (Infinitesimals) का उपयोग शामिल है। दरसल, सीमा के सिद्धांत में शब्द “इनफिनिटिसिमल्स " किसी भी ऐसे अनुक्रम पर लागू होता है, जिसकी सीमा शून्य के करीब होती है, लेकिन यह शून्य नहीं है । इनफिनिटिसिमल्स को पहली बार बोनवेंटुरा कैवलियरी (Bonaventura Cavalieri) द्वारा मात्रा (वॉल्यूम) और क्षेत्रों की गणना पर, एक ग्रंथ में, असीम रूप से पतले क्रॉस-सेक्शन के योग के रूप में पेश किया गया था। हालांकि, ये विचार आर्किमिडीज़ (Archimedes) के विचारों के समान थे । कैवलियरी के काम को अच्छी तरह से सम्मान नहीं दिया गया था क्योंकि उनके तरीके गलत परिणाम दे सकते थे और इसी कारणवश उस समय इनफिनिटिसिमल्स के उपयोग को स्वीकार नहीं किया गया।
बाद में, पियरे डी फर्मेट (Pierre de Fermat) ने पर्याप्तता की अवधारणा पेश की, जो एक अतिसूक्ष्म त्रुटि अवधि तक समानता का प्रतिनिधित्व करती है। इस अवधारणा को बाद में, कैल्क्युलस के दूसरे मौलिक प्रमेय को साबित करने के लिए कलन और जॉन वालिस, आइजैक बैरो और जेम्स ग्रेगोरी (Cullen & John Wallis, Isaac Barrow and James Gregory) के काम के साथ जोड़ा गया। आइजैक न्यूटन ने गणित और भौतिकी की समस्याओं को हल करने के लिए कलन की विधियों का उपयोग किया और उत्पाद नियम, श्रृंखला नियम तथा उच्च डेरिवेटिव और टेलर श्रृंखला (Higher derivatives and Taylor series) की धारणा विकसित की। उन्होंने आंशिक और अपरिमेय शक्तियों सहित कार्यों के लिए श्रृंखला विस्तार भी विकसित किया। गॉटफ्रीड विल्हेम लीबनिज (Gottfried Wilhelm Leibniz ) ऐसे प्रथम व्यक्ति थे जिन्होंने कलन के नियमों को स्पष्ट रूप से बताया। उन्हें अपरिमेय मात्राओं के साथ काम करने के लिए नियमों का एक स्पष्ट संग्रह प्रदान करने और उनके अंतर और अभिन्न रूपों में उत्पाद नियम और श्रृंखला नियम विकसित करने का श्रेय भी दिया जाता है। वह अंकन के अपने सावधान विकल्पों के लिए भी जाने जाते हैं।
जब न्यूटन और लीबनिज ने पहली बार अपने परिणाम प्रकाशित किए, तो इस बात पर विवाद था कि कैल्क्युलस के आविष्कार का श्रेय किसे दिया जाना चाहिए। न्यूटन ने दावा किया कि लीबनिज ने उनके अप्रकाशित कार्य लेखों से विचारों को चुरा लिया था, जबकि लीबनिज ने तर्क दिया कि उन्होंने स्वतंत्र रूप से कैल्क्युलस विकसित किया था।
लेकिन हाल ही में इस पूरे विवाद में सबसे बड़ा मोड़ आया है, जिसने अब तक की पूरी अवधारणा को ही बदल के रख दिया है! दरअसल, हाल ही में इंग्लैंड में मैनचेस्टर और एक्सेटर (Manchester & Exeter) के विश्वविद्यालयों की एक शोध टीम ने पता लगाया है कि कलन के निर्माण का सीधा श्रेय वास्तव में भारत में "केरल स्कूल" के रूप में जाने वाले विद्वानों और गणितज्ञों के एक अल्पज्ञात समूह को दिया जा सकता है। इस समूह ने 14वीं शताब्दी मेंकैल्क्युलस के एक ऐसे बुनियादी घटक की पहचान की, जिसे “अनंत श्रृंखला" (the Infinite Series)" के रूप में जाना जाता है। शोध दल के एक सदस्य, डॉ. जॉर्ज घेवर्गीस जोसेफ (Dr. George Ghevarghese Joseph) के अनुसार, इन निष्कर्षों को न्यूटन या लीबनिज़ के योगदान से कम करके नहीं आंकना चाहिए, बल्कि इसके बजाय गैर-यूरोपीय विचारकों के उन योगदानों को उजागर करना चाहिए, जिन्हें आज तक अनदेखा किया गया है। उनका मानना है कि “आधुनिक गणित की शुरुआत को आमतौर पर एक यूरोपीय उपलब्धि के रूप में देखा जाता है, लेकिन भारत में 14वीं और 16वीं शताब्दी के बीच केरल स्कूल द्वारा की गई खोजों को बड़े पैमाने पर अनदेखा किया गया या पूर्णतः भुला दिया गया है।”
डॉ. जोसेफ यह तर्क देते हैं कि कलन की खोज के पीछे की सच्ची कहानी को दबाने के लिए साम्राज्यवादी दृष्टिकोण जिम्मेदार हैं। अर्थात गैर-यूरोपीय दुनिया से निकलने वाले वैज्ञानिक विचारों की उपेक्षा के कारण केरल स्कूल के योगदान को ठीक से मान्यता नहीं मिली है।
हालांकि, डॉ. जोसेफ के अनुसार इस अनदेखी का एक बड़ा कारण यहाँ के दक्षिणी इतिहास में भी छिपा है।दरसल, केरल की स्थानीय भाषा, जिसे मलयालम कहा जाता है, के मध्यकालीन रूप का लोगों को बहुत कम ज्ञान है, जिसमें इस उल्लेखनीय गणित का दस्तावेजीकरण करने वाले कुछ सबसे महत्वपूर्ण ग्रंथ लिखे गए थे। संभव है कि ज्ञान की इस कमी ने भी केरल स्कूल के योगदान को अनदेखा कर दिया। डॉ. जोसेफ ने अपनी सबसे अधिक बिकने वाली पुस्तक, द क्रेस्ट ऑफ द पीकॉक: द नॉन-यूरोपियन रूट्स ऑफ मैथमैटिक्स “The Crest of the Peacock: The Non-European Roots of Mathematics” (यह पुस्तक अभी तक प्रकाशित नहीं हुई है।) के तीसरे संस्करण के लिए शोध करते हुए यह शानदार खोज की। कैल्क्युलस के पीछे के विचार, जैसे डेरिवेटिव, इंटीग्रेशन, टेलर सीरीज़, और कैल्क्युलस की मौलिक प्रमेय, का एक लंबा इतिहास है जो न्यूटन और लीबनिज़ से पहले का है। आर्किमिडीज, भास्कराचार्य द्वितीय और संगमग्राम के माधव(Madhav of Sangamgram) सभी ने इन अवधारणाओं के विकास में योगदान दिया। बैरो, फ़र्मेट, पास्कल और डेसकार्टेस (Barrow, Fermat, Pascal and Descartes) जैसे यूरोपीय गणितज्ञों ने भी इन विचारों को परिष्कृत और विस्तारित किया। भास्कराचार्य द्वितीय ने मौजूदा ज्ञान (डेरिवेटिव और इंटीग्रल “Derivatives and Integrals”) में कई उल्लेखनीय सुधार किए। यहां तक कि उन्हें इनफिनिटिसिमल्स (Infinitesimals) की प्रारंभिक धारणा का भी ज्ञान था। भास्कराचार्य द्वितीय के साथ ही संगमग्राम के माधव के पास टेलर श्रृंखला (Taylor Series) की पूर्व अवधारणा थी, और उनका नाम अब लीबनिज़ श्रृंखला के साथ जोड़ा जाता है।
संगमग्राम के माधव (1350 ई- 1425 ई) एक प्रसिद्ध केरल गणितज्ञ-खगोलज्ञ थे, ये भारत के केरल राज्य के कोचीन जिले के निकट स्थित इरन्नलक्कुता नामक नगर के निवासी थे। भारत में केरल स्कूल में, अनंत श्रृंखला या कुछ संख्यात्मक एकीकरण जैसे कलन की शुरुआत के लिए बहुत काम किया गया था।
संदर्भ
https://bit.ly/3WLAYWn
https://bit.ly/3jgwQ1Z
https://bit.ly/3jeoZC5
चित्र संदर्भ
1. आर्यभट्ट, रामानुजन और विभेदक और अभिन्न कलन को दर्शाता एक चित्रण (flickr)
2. अभिन्न कलन को दर्शाता एक चित्रण (flickr)
3. अति सूक्ष्म राशि (Infinitesimals) को दर्शाता एक चित्रण (wikimedia)
4. आइजैक न्यूटन को दर्शाता एक चित्रण (lookandlearn)
5. कलन के प्रतीक को दर्शाता एक चित्रण (wikimedia)
6. द क्रेस्ट ऑफ द पीकॉक: द नॉन-यूरोपियन रूट्स ऑफ मैथमैटिक्स को दर्शाता एक चित्रण (amazon )
7. संगमग्राम के माधव को दर्शाता एक चित्रण (wikimedia)
© - 2017 All content on this website, such as text, graphics, logos, button icons, software, images and its selection, arrangement, presentation & overall design, is the property of Indoeuropeans India Pvt. Ltd. and protected by international copyright laws.