Post Viewership from Post Date to 14-Oct-2023 (31st Day)
City Subscribers (FB+App) Website (Direct+Google) Email Instagram Total
2338 422 2760

***Scroll down to the bottom of the page for above post viewership metric definitions

आइए जानते हैं गणितीय स्थिरांक पाई (π) के मान और इतिहास के विषय में

लखनऊ

 14-09-2023 09:35 AM
विचार 2 दर्शनशास्त्र, गणित व दवा

प्राचीन दुनिया के सात अजूबों में से सबसे पुराना, गीज़ा का महान पिरामिड (Great Pyramid of Giza), जिसे खुफू का पिरामिड (Pyramid of Khufu) या चेओप्स का पिरामिड (Pyramid of Cheops) भी कहा जाता है, मिस्र के काहिरा में स्थित है, वास्तव में एक विचारोत्तेजक पहेली है। क्या आप जानते हैं कि ग्रेट पिरामिड में गणितीय स्थिरांक पाई (π) का मान लगभग 3.1419 के मान तक डिज़ाइन किया गया है। लेकिन उस समय तक इतनी सटीकता से पाई के मान की खोज नहीं की गई थी। यहां यह भी जानने योग्य विषय है कि मिस्रवासियों को इसका अनुमानित मूल्य कैसे पता चला ? यह भी प्रश्न उठता है कि पाई का उपयोग कितने वर्षों से किया जा रहा है ? प्रत्येक व्यक्ति ने, बचपन में चाहे वह पढ़ाई में अच्छा रहा हो या ना रहा हो, पाई (π) का मान समझने में नानी दादी को अवश्य ही याद किया होगा। आइए, आज के अपने इस लेख में हम पाई (π) के मान और इतिहास के विषय में जानते हैं! पाई (π) का मान, एक वृत्त की परिधि और उसके व्यास का अनुपात होता है। इसका मान, लगभग 3.14159 के बराबर है। एक वृत्त में, यदि आप परिधि (वृत्त की रेखा की कुल दूरी) को इसके व्यास से विभाजित करते हैं, तो आपको निश्चित तौर पर, 3.14159 अर्थात पाई संख्या प्राप्त होगी। फिर वह वृत्त चाहे बड़ा हो या छोटा, पाई का मान समान ही रहता है। पाई को ‘π’ के प्रतीक द्वारा दर्शाया जाता है और इस प्रतीक का उच्चारण “पाई” के रूप में किया जाता है। यह शब्द ग्रीक वर्णमाला का 16वां अक्षर है और इसका उपयोग पाई के गणितीय स्थिरांक या नियतांक को दर्शाने के लिए किया जाता है।
केवल गणित ही नहीं बल्कि वास्तुकला के कई क्षेत्रों में भी पाई का व्यापक रूप से उपयोग किया जाता है। पुल, मस्जिद और कई इमारतें मेहराबों के उपयोग की विशेषता साझा करती हैं। और चूंकि मेहराब अर्धवृत्त होते हैं, पाई इनकी परिधि निर्धारित करने में मदद करती है। पाई के मान 3.14 संख्या का कोई सरल, एकल मूल नहीं है। जबकि, इसे दर्शाने हेतु इस ग्रीक मूल के प्रभाव के कारण, हम ग्रीक अक्षर π का प्रयोग करते हैं। किंतु वास्तव में यह संख्या एक सार्वभौमिक विचार का प्रतिनिधित्व करती है। इस संख्या पर 3000 ईसा पूर्व से ही, दुनिया भर में अध्ययन, गणना और विचार किया गया है। आइए, उन गणितज्ञों और विचारकों पर एक नज़र डालते हैं, जिन्होंने इस वर्तमान संख्या के बारे में, हमारे ज्ञान को आगे बढ़ाने में मदद की है। लगभग 3000 ईसा पूर्व π के मान पर विचार करने वाले पहले ज्ञात लोग, लगभग 5000 वर्ष पहले बेबीलोनियाई (Babylonians) और मिस्रवासी (Egyptians) थे। गिजेह (Gizeh) में चेओप्स (Cheops) एवं स्नेफेरू (Sneferu) के मिस्र के पिरामिडों (Egyptian pyramids) में पिरामिड की आधी परिधि और ऊंचाई का अनुपात बराबर है 3 पूर्णांक 1/7 के बराबर था। यह मान भी लगभग 3.14159 ही था। यह अनुपात संभवतः π के मान की गणना करने का एक प्रारंभिक प्रयास था।
तब मिस्त्रवासियों ने एक लुढ़कते हुए चक्र (Trundle wheel) – एक चक्र जिसे बार–बार घुमाकर किसी वस्तु की दूरी तय की जाती है – का उपयोग किया होगा , जिसका उपयोग करते हुए, उन्होंने पिरामिड की ऊंचाई एवं इसके आधार की परिधि
ज्ञात की होगी। चूंकि, एक चक्र की परिधि में π का संबंध आता है, वे आगे गणना करके π का माप निकाल सकने में सक्षम रहे होंगे।
 लगभग 1850 ईसा पूर्व इसके मान के एक प्रलेखित साक्ष्य का प्रसिद्ध प्रारंभिक उदाहरण, अहम्स (Ahmes) नामक मिस्र के एक लेखक द्वारा लिखित ‘राइंड पपाइरस’ (Rhind Papyrus) में मौजूद है। पपाइरस में, अहम्स एक गोलार्ध के सतह क्षेत्र की गणना करने का प्रयास करते हैं। यह गणना वृत्त के लिए की जाती है और इस प्रकार इसका तात्पर्य, π = (16/9) 2 है। हालांकि यह मान बिल्कुल सटीक नहीं है, जो लगभग 3.1605 का मान देता है।
लगभग 440 ईसा पूर्व ग्रीक गणितज्ञ एंटिफ़ोन (Antiphon) ने अंदर की ओर बढ़ती हुई भुजाओं वाले बहुभुजों को अंकित करने और एक वृत्त बनाने का क्रांतिकारी कदम उठाया, जो कैलकुलस (Calculus) के सिद्धांतों में से एक है। इससे यह पता चला कि किसी वृत्त के क्षेत्रफल की सटीक गणना से इसका मान पता चल जाता है, क्योंकि,‘r’ त्रिज्या के एक वृत्त का ‘A’ क्षेत्रफल A = πr2 द्वारा दिया जाता है। लगभग 265 ईसवी265 ईसवी के करीब, एक चीनी गणितज्ञ लिऊ हुई (Liu Hui) ने स्वतंत्र रूप से, एक वृत्त में अनेकों भुजाओं वाले बहुभुजों को शामिल करते हुए एक कुशल विधि का उपयोग किया था। तब, लिऊ ने π के मान में दशमलव बिंदु के बाद पहले चार अंकों को (3.1415) सही ढंग से निर्धारित किया था। इसके पश्चात, लगभग 200 वर्षों बाद, एक अन्य चीनी गणितज्ञ ज़ूचोंगजी (ZuChongzhi) ने लिऊ हुई के सिद्धांत पर काम करते हुए, π के मान के लिए सबसे सटीक अनुमान दिया, जो 3.141592920... था।
लगभग 499 ईसवी इसके बाद की कुछ शताब्दियों में, भारतीय गणितज्ञों ने पाई के मान की गणना में उल्लेखनीय प्रगति की। लगभग 499 ईसवी में भारतीय खगोलशास्त्री और गणितज्ञ आर्यभट्ट ने 3.1416 संख्या का अपने आर्यभटीय (Aryabhatiya) में प्रयोग किया था। 628 ईसवी में, एक अन्य भारतीय खगोलशास्त्री और गणितज्ञ ब्रह्मगुप्त ने 96 भुजाओं तक अंकित बहुभुज विधि का परीक्षण किया और यह परिकल्पना की, कि π = √10 है।
लगभग 830 ईसवी अरबी (Arabic) गणितज्ञ मुहम्मद अल-ख्वारिज्मी ने π की गणना करने हेतु, विभिन्न प्रकार के मानों का उपयोग किया। उन्होंने यह भी दावा किया कि “प्रचलित पाई का मान एक अनुमान मात्र है, और वास्तविक नहीं है। साथ ही, कोई भी वृत्त की वास्तविक परिधि नहीं जानता हैं।”
लगभग 1360 ईसवी ऐतिहासिक रूप से, π के लिए प्रथम सटीक सूत्र में एक अनंत श्रृंखला का उपयोग किया जाता था एवं लगभग 1400 तक यह उपलब्ध नहीं था। फिर एक मध्यकालीन भारतीय गणितज्ञ व खगोलशास्त्री माधव ने इस श्रृंखला की खोज की, जो अपेक्षाकृत तौर पर, अभीभी हाल ही के कुछ वर्षों तक पश्चिम में अज्ञात रही । उन्होंने पता लगाया था कि कोई भी निम्नलिखित अनंत श्रृंखला का उपयोग करते हुए, पाई के मान की गणना कर सकता है- π/4 = 1 – 1/3 + 1/5 – 1/7 + 1/9 – ….
इसे अब माधव–लीबनिज (Madhava-Leibniz) या माधव–ग्रेगरी-लीबनिज (Madhava-Gregory-Leibniz) श्रृंखला के रूप में जाना जाता है। 1424 ईसवी 1424 में फ़ारसी खगोलशास्त्री और गणितज्ञ जमशेदअल-काशी ने एक बहुभुज का उपयोग करते हुए, π की गणना की थी।
2002 ईसवी हालांकि आज के युग में Π के विभिन्न मानों को जानना गणितज्ञों के लिए अब उतना महत्वपूर्ण नहीं रह गया है। लेकिन कंप्यूटर वैज्ञानिकों (Computer scientists) के लिए इसका मान जाननामहत्त्वपूर्ण है। π की गणना करने में सक्षम होना, किसी कंप्यूटर की प्रसंस्करण शक्ति के लिए एक मानक के रूप में देखा जाता है। इसके साथ ही, इसका उपयोग मानवीय सरलता को भी प्रदर्शित करने के एक तरीके के रूप में किया जाता है। < वर्ष 2021 पाई का मान अभी भी सुर्खियां बटोर रहा है! आज भी कई वैज्ञानिक एवं गणितज्ञ पाई के मान में, दशमलव के आगे की असंख्य अंकों को खोजने में लगे हुए हैं।

संदर्भ
https://tinyurl.com/bdhdm5cc
https://tinyurl.com/43rvjvr3
https://tinyurl.com/3hm3tn8b
https://tinyurl.com/447zh3xt

चित्र संदर्भ 
1. पाई के चिन्ह को दर्शाता एक चित्रण (openclipart)
2. 3.14159 अर्थात पाई संख्या को दर्शाता एक चित्रण (prarang)
3. पाई के विस्तारीकरण को दर्शाता एक चित्रण (wikimedia)
4. बिंदु इकाई वर्ग के अंदर बेतरतीब ढंग से बिखरे हुए हैं, को दर्शाता एक चित्रण (wikimedia)



***Definitions of the post viewership metrics on top of the page:
A. City Subscribers (FB + App) -This is the Total city-based unique subscribers from the Prarang Hindi FB page and the Prarang App who reached this specific post. Do note that any Prarang subscribers who visited this post from outside (Pin-Code range) the city OR did not login to their Facebook account during this time, are NOT included in this total.
B. Website (Google + Direct) -This is the Total viewership of readers who reached this post directly through their browsers and via Google search.
C. Total Viewership —This is the Sum of all Subscribers(FB+App), Website(Google+Direct), Email and Instagram who reached this Prarang post/page.
D. The Reach (Viewership) on the post is updated either on the 6th day from the day of posting or on the completion ( Day 31 or 32) of One Month from the day of posting. The numbers displayed are indicative of the cumulative count of each metric at the end of 5 DAYS or a FULL MONTH, from the day of Posting to respective hyper-local Prarang subscribers, in the city.

RECENT POST

  • आइए, आनंद लें, साइंस फ़िक्शन एक्शन फ़िल्म, ‘कोमा’ का
    द्रिश्य 3 कला व सौन्दर्य

     24-11-2024 09:20 AM


  • विशिष्ट आर्थिक क्षेत्र व प्रादेशिक जल, देशों के विकास में होते हैं महत्वपूर्ण
    समुद्र

     23-11-2024 09:29 AM


  • क्या शादियों की रौनक बढ़ाने के लिए, हाथियों या घोड़ों का उपयोग सही है ?
    विचार I - धर्म (मिथक / अनुष्ठान)

     22-11-2024 09:25 AM


  • होबिनहियन संस्कृति: प्रागैतिहासिक शिकारी-संग्राहकों की अद्भुत जीवनी
    सभ्यताः 10000 ईसापूर्व से 2000 ईसापूर्व

     21-11-2024 09:30 AM


  • अद्वैत आश्रम: स्वामी विवेकानंद की शिक्षाओं का आध्यात्मिक एवं प्रसार केंद्र
    पर्वत, चोटी व पठार

     20-11-2024 09:32 AM


  • जानें, ताज महल की अद्भुत वास्तुकला में क्यों दिखती है स्वर्ग की छवि
    वास्तुकला 1 वाह्य भवन

     19-11-2024 09:25 AM


  • सांस्कृतिक विरासत और ऐतिहासिक महत्व के लिए प्रसिद्ध अमेठी ज़िले की करें यथार्थ सैर
    आधुनिक राज्य: 1947 से अब तक

     18-11-2024 09:34 AM


  • इस अंतर्राष्ट्रीय छात्र दिवस पर जानें, केम्ब्रिज और कोलंबिया विश्वविद्यालयों के बारे में
    वास्तुकला 1 वाह्य भवन

     17-11-2024 09:33 AM


  • क्या आप जानते हैं, मायोटोनिक बकरियाँ और अन्य जानवर, कैसे करते हैं तनाव का सामना ?
    व्यवहारिक

     16-11-2024 09:20 AM


  • आधुनिक समय में भी प्रासंगिक हैं, गुरु नानक द्वारा दी गईं शिक्षाएं
    विचार I - धर्म (मिथक / अनुष्ठान)

     15-11-2024 09:32 AM






  • © - 2017 All content on this website, such as text, graphics, logos, button icons, software, images and its selection, arrangement, presentation & overall design, is the property of Indoeuropeans India Pvt. Ltd. and protected by international copyright laws.

    login_user_id