City Subscribers (FB+App) | Website (Direct+Google) | Total | ||
2291 | 4 | 2295 |
***Scroll down to the bottom of the page for above post viewership metric definitions
अपनी उम्र में इजाफा करना, क्लोनिंग (जीव नकल) करना या फिर मृत को पुनर्जीवित करना,
इंसानों की सबसे गहरी महत्वकांशा रही है! जीवविज्ञानियों के लिए भी यह अब तक की सबसे बड़ी
चुनौतियों में से एक रही है! लेकिन कल्पना मात्र प्रतीत होने वाली यह संभावना भी, जल्द ही सच
साबित हो सकती हैं! क्यों की हाल ही में जीवविज्ञानिकों द्वारा अब तक की सबसे शक्तिशाली
सिंथेटिक कोशिका (synthetic cell) की खोज कर ली गई है!
दरअसल सिंथेटिक सेल, कृत्रिम सेल या मिनिमल सेल (minimal cell ) एक इंजीनियर कण होता
है, जो एक जैविक कोशिका के एक या कई कार्यों की नकल कर सकता है। अक्सर, कृत्रिम कोशिकाएं
जैविक या बहुलक झिल्ली होती हैं, जो जैविक रूप से सक्रिय सामग्री को घेर लेती हैं।
ऐसी
कोशिकाएं शरीर के लिए छोटी फैक्ट्रियों के रूप में कार्य कर सकती हैं जो शरीर में बीमारी का पता
लगाने और अंदर रहते हुए उसके इलाज के लिए दवाओं का उत्पादन करने सहित छोटे कंप्यूटर के
रूप में कार्य करती हैं।
दुनियाभर के वैज्ञानिक, कार्यात्मक सिंथेटिक कोशिकाओं के निर्माण और विकास को लेकर निरंतर
प्रयासरत है। इसी क्रम में स्टटगार्ट विश्वविद्यालय (University of Stuttgart) में द्वितीय
भौतिकी संस्थान के वैज्ञानिक और मैक्स प्लैंक इंस्टीट्यूट फॉर मेडिकल रिसर्च (Max Planck
Institute for Medical Research) के सहयोगी, अब सिंथेटिक कोशिकाओं की दिशा में अगला
कदम उठाने को तैयार हैं।
उन्होंने कार्यात्मक डीएनए-आधारित साइटो स्केलेटन (cyto skeleton) को कोशिका के आकार के
डिब्बों में पेश किया है। दरअसल साइटो स्केलेटन प्रत्येक कोशिका के आवश्यक घटक होते हैं, जो
उनके आकार, आंतरिक संगठन और अन्य महत्वपूर्ण कार्यों जैसे कि कोशिका के विभिन्न भागों के
बीच अणुओं के परिवहन को नियंत्रित करते हैं। साइटो स्केलेटन को सिंथेटिक बूंदों (synthetic
droplets) में शामिल करके, शोधकर्ताओं ने कुछ ट्रिगर पर अणुओं या असेंबली के परिवहन और
डिस्सेप्लर सहित कार्यक्षमता भी दिखाई।
साइटोस्केलेटन प्रत्येक कोशिका का एक महत्वपूर्ण घटक होता है, और यह विभिन्न प्रोटीनों से
बना होता है। कोशिका को उसका आकार देने के मूल कार्य के बजाय, यह कई सेलुलर प्रक्रियाओं
जैसे कोशिका विभाजन, विभिन्न अणुओं के इंट्रासेल्युलर परिवहन (intracellular transport)
और बाहरी सिग्नलिंग के जवाब में गतिशीलता के लिए आवश्यक होता है। प्राकृतिक प्रणालियों में
इसके महत्व और कृत्रिम सेटअप में इसकी कार्यक्षमता की नकल करने में सक्षम होने के गुण के
कारण इसे सिंथेटिक सेल के निर्माण और डिजाइन की दिशा में एक महत्वपूर्ण कदम माना जा रहा
है। पूरक बेस-पेयरिंग द्वारा पूर्व-नियोजित आकार में स्व-एकत्र करने के लिए डीएनए को प्रोग्राम
या इंजीनियर किया जा सकता है।
सिंथेटिक जीव विज्ञान के क्षेत्र में शोधकर्ताओं ने पहले डीएनए नैनो टेक्नोलॉजी (DNA
Nanotechnology) का उपयोग सेलुलर घटकों जैसे कि डीएनए-आधारित मिमिक ऑफ आयन
चैनल (mimic off ion channel) या सेल-सेल लिंकर्स को फिर से बनाने के लिए किया है।
"सिंथेटिक डीएनए संरचनाएं अत्यधिक विशिष्ट और प्रोग्राम किए गए कार्यों के साथ-साथ जैविक
रूप से परिभाषित उपकरणों से उपलब्ध बहुमुखी डिजाइन संभावनाओं को सक्षम कर सकती हैं।
इसके अलावा, शोधकर्ता पॉल रोथेमुंड, एलिसा फ्रेंको और रेबेका शुलमैन (Paul Rothemund,
Alyssa Franco and Rebecca Schulman) पहले से ही डीएनए को, माइक्रोन-स्केल फिलामेंट्स
(micron-scale filaments) में इकट्ठा करने में सफल रहे थे, जो एक साइटो स्केलेटन के निर्माण
का आधार बनते हैं।
स्टटगार्ट विश्वविद्यालय और एमपीआई फॉर मेडिकल रिसर्च के वैज्ञानिकों ने अब सिंथेटिक
साइटो स्केलेटन के रूप में फिलामेंट्स का उपयोग करके और उन्हें विविध कार्यक्षमता देकर कृत्रिम
सेल बनाने के लिए अगला कदम उठाया है। इसके अलावा, वैज्ञानिकों की टीम खालिद सलैता
(Khalid Salita) द्वारा शुरू किए गए बर्न-ब्रिज तंत्र (burn-bridge system) का उपयोग करके
फिलामेंट्स के साथ पुटिकाओं के परिवहन को प्रेरित करने में भी सफल रही है। यह कोशिकाओं में
प्राकृतिक साइटोस्केलेटन के कुछ हिस्सों के साथ पुटिका परिवहन (vesicle transport) की नकल
करता है, जिसे माइक्रोट्यूबुली (microtubuli) कहा जाता है। "जीवित कोशिकाओं में परिवहन की
तुलना में, हमारे डीएनए फिलामेंट्स के साथ परिवहन अभी भी धीमा है।
सिंघुआ विश्वविद्यालय, स्कूल ऑफ फार्मास्युटिकल साइंसेज (Tsinghua University, School
of Pharmaceutical Sciences) में शेंग डिंग (sheng ding) के नेतृत्व में किया गया एक शोध,
शीर्ष वैज्ञानिक पत्रिका नेचर पत्रिका में प्रकाशित हुआ है।
इस शोध में, डिंग और उनके सहयोगियों ने एक ड्रग कॉकटेल (drug cocktail) की पहचान की है,
अपनी इच्छा से एक सर्व-शक्तिशाली स्टेम सेल (एक सेल प्रकार जो स्वयं को एक संपूर्ण जीव मेंबदल सकता है) को प्रेरित कर सकता है।
जीवन का निर्माण एक कोशिका से शुरू होता है। आपके रक्त, मस्तिष्क और यकृत की कोशिकाओं
का पता इस एक-कोशिका वाले भ्रूण या युग्मनज से लगाया जा सकता है। प्रकृति में, एक युग्मनज
का निर्माण शुक्राणु और अंडे के एक साथ विलय के रूप में होता है। और यह घटना एक
अपरिवर्तनीय प्रक्रिया को शुरू करती है जहां युग्मनज विभाजित होता है, नई कोशिकाओं का
निर्माण करता है और नई कोशिकाएं विभाजित होती रहती हैं और तेजी से विशिष्ट होती जाती हैं।
एक बार जब एक-कोशिका भ्रूण विभाजित हो जाता है और दो-कोशिका भ्रूण अवस्था में आ जाता है,
तो बाद की कोशिकाएं एक संपूर्ण जीव और इसके सहायक ऊतकों जैसे जर्दी थैली और प्लेसेंटा
(yolk sac and placenta) को उत्पन्न करने के लिए सभी प्रकार की कोशिकाओं को जन्म देने की
विभेदन क्षमता को खो देती हैं।
वैज्ञानिक इन सभी शक्तिशाली कोशिकाओं को एक-कोशिका और दो-कोशिका भ्रूण अवस्थाओं को
टोटीपोटेंट स्टेम (totipotent stem) सेल कहते हैं। मानव विकास की दृष्टि से यह प्रणाली बेहद
महत्वपूर्ण हो सकती है, क्योंकि यह जीवन की शुरुआत से संबंधित कई वैज्ञानिक जांचों को सक्षम
करेगी। उदाहरण के लिए, वैज्ञानिक इस प्रणाली का उपयोग जीवन की शुरुआत में अत्यधिक
ऑर्केस्ट्रेटेड प्रक्रिया (orchestrated process) को बेहतर ढंग से समझने के लिए टोटीपोटेंट
कोशिकाओं में हेरफेर करने के लिए कर सकते हैं! इसके अलावा, एक गहरी समझ होने और इस
प्रकार टोटीपोटेंट कोशिकाओं पर नियंत्रण के व्यापक प्रभाव भी होंगे, जैसे कि व्यक्तिगत जीवन के
निर्माण पर दूसरा मौका अर्जित करना और यहां तक कि एक प्रजाति के विकास में तेजी
लाना भी इसमें शामिल है।
2016 में, जे क्रेग वेंटर इंस्टीट्यूट (J Craig Venter Institute) के शोधकर्ताओं ने घोषणा की कि,
उन्होंने एक नया जीवन रूप सिर्फ 473 जीन वाला एक जीवाणु बनाया है। इसे Syn 3.0 के रूप में
जाना जाता है, यह कोशिका में प्रकृति में पाए जाने वाले किसी भी जीवन रूप से छोटा जीनोम था।
इसे एक ऐतिहासिक उपलब्धि के रूप में माना गया, जिसने एक नए युग की शुरुआत की जिसमें
वैज्ञानिक आनुवंशिक कोड का उपयोग डिजाइनर जीवन रूपों को बनाने के लिए करेंगे।
सिंथेटिक बायोलॉजी दिमाग को उड़ाने वाली संभावनाओं का क्षेत्र है। यहां हम रोगाणुओं के जीनोम
को बदलकर, बायो इंजीनियर वायरस-प्रूफ फसलों (Bio engineer virus-proof crops) का
उत्पादन भी कर सकते हैं, बायोडिग्रेडेबल कंप्यूटर हमारे दिमाग में प्रत्यारोपित किए जा सकते हैं,
कोशिकाएं जो मंगल ग्रह की मिट्टी में पोषक तत्व जोड़ सकती हैं, और लाल ग्रह (मंगल) को भी
रहने योग्य बना सकती हैं।
संदर्भ
https://prn.to/3xTFuHi
https://bit.ly/3NoNfuH
https://bit.ly/2RA0Ar3
चित्र संदर्भ
1. सिंथेटिक सेल घटक, जटिल कोशिकाओं में जीवन संहिता का विस्तार करता है, जिसको दर्शाता एक चित्रण (TED)
2. सेक्रेटरी पाथवे के ऑर्गेनेल को दर्शाता एक चित्रण (wikimedia)
3. साइटोस्केलेटल अवयव को दर्शाता एक चित्रण (wikimedia)
4. साइटो स्केलेटन को दर्शाता एक चित्रण (wikimedia)
5. टोटीपोटेंट कोशिकाओं को दर्शाता एक चित्रण (Store norske leksikon)
6. सिर्फ 473 जीन वाले एक जीवाणु ( Syn 3.0) को दर्शाता एक चित्रण (Science)
© - 2017 All content on this website, such as text, graphics, logos, button icons, software, images and its selection, arrangement, presentation & overall design, is the property of Indoeuropeans India Pvt. Ltd. and protected by international copyright laws.