Post Viewership from Post Date to 23-Apr-2024 (31st Day)
City Subscribers (FB+App) Website (Direct+Google) Email Instagram Total
1706 99 1805

***Scroll down to the bottom of the page for above post viewership metric definitions

शून्य की खोज की रोचक कहानी, ऐसे बना था भारत गणित में विश्व गुरु

लखनऊ

 23-03-2024 11:11 AM
विचार 2 दर्शनशास्त्र, गणित व दवा

हम जानते हैं कि, शून्य इस संख्या का अपने आप में कोई महत्व नहीं है। लेकिन, यदि इसके पहले या बाद में कोई संख्या रखी जाए, तो उस संख्या का महत्व बढ़ता या घट जाता है। शून्य की विशेषता यह है कि, इसे किसी भी संख्या से गुणा या भाग देने पर परिणाम शून्य ही रहता है। तो आइए आज, शून्य की कहानी का रोचक इतिहास जानते हैं और शून्य का महत्व समझते हैं। साथ ही, भारतीय दर्शन में शून्य के संबंध के बारे में भी जानिए।
हमारे पास शून्य का सबसे पहला प्रमाण, लगभग 5,000 साल पहले मेसोपोटामिया(Mesopotamia) की सुमेरियन संस्कृति(Sumerian culture) से है। शून्य की अवधारणा ने, न केवल गणित में बल्कि लोगों के सामान्य जीवन में भी बहुत सारे बदलाव लाए हैं। शून्य के कई अलग-अलग नाम हैं, उदाहरण के लिए, ‘शून्य(Null या Nil)’, अंक के रूप में ‘0’, संस्कृत में ‘शून्य’, इत्यादि। यह दिलचस्प है कि, शून्य के कारण गणित की उत्पत्ति कैसे बदल गई। जबकि, गणित में अब इसका एक अभाज्य अंक के रूप में उपयोग किया जाता है। आधुनिक शून्य के बारे में जानने से पहले, आइए भारत में शून्य की उत्पत्ति के बारे में जानें। माना जाता है कि, शून्य की उत्पत्ति 5वीं शताब्दी ईसवी के आसपास हिंदू सांस्कृतिक और आध्यात्मिक क्षेत्र में हुई थी। संस्कृत में शून्य के लिए ‘शून्य’ शब्द मौजूद है, जो शून्यता को दर्शाता है। भारत में शून्य की उत्पत्ति प्रसिद्ध खगोलशास्त्री और गणितज्ञ आर्यभट्ट के द्वारा हुई है। आर्यभट्ट ने शून्य का एक स्थानधारक संख्या के रूप में उपयोग किया था। फिर, 5वीं शताब्दी में, आर्यभट्ट ने दशमलव संख्या प्रणाली में शून्य की शुरुआत की और इसलिए, इसे गणित में पेश किया गया। आर्यभट्ट के बाद 7वीं शताब्दी में, ब्रह्मगुप्त ने शून्य के नियमों का वर्णन किया। दूसरी ओर, गणित में शून्य की उत्पत्ति का सबसे स्पष्ट प्रमाण, भारत की सबसे पुरानी पांडुलिपि में वर्णित है, जिसे ‘बख्शाली पांडुलिपि’ के नाम से जाना जाता है। इस पुस्तक में शून्य को एक बिंदु के रूप में इस्तेमाल किया गया था।
जब शून्य की अवधारणा अरब पहुंची, तो उस संख्या को एक अंडाकार आकार दिया गया जिसे आज हम ‘0’ अंक के रूप में जानते हैं। यही कारण है कि, शून्य हिंदू-अरबी अंक प्रणाली से संबंधित है। आर्यभट्ट के बाद शून्य का श्रेय ‘ब्रम्हपुत्र’ को दिया जाता है। ब्रम्हपुत्र’ ने 7वीं शताब्दी में गणितीय संक्रियाओं में शून्य का प्रयोग शुरू किया था। जबकि, आधुनिक शून्य को बाद में पेश किया गया, जब शून्य भारत से चीन(China) और इसके बाद में मध्य पूर्व(Middle East) तक पहुंच गया। लगभग 773 ईसवी में, गणितज्ञ मुहम्मद इब्न-मूसा अल- ख्वारिज्मी ने भारतीय अंकगणित का अध्ययन और संश्लेषण किया। तब उन्होंने दिखाया कि, सूत्रों की प्रणाली में शून्य कैसे कार्य करता है। इस अवधारणा को उन्होंने ‘अल-जबर’ कहा था, जिसे आज बीजगणित के रूप में जाना जाता है। 1200 ईसवी के आसपास, इतालवी गणितज्ञ फिबोनाची(Fibonacci) ने यूरोप(Europe) में शून्य की शुरुआत की थी। प्रारंभ में, मध्य पूर्व में इसे ‘सिफर (Sifar)’ कहा जाता था। जब यह इटली(Italy) में पहुंचा, तो इसे ‘ज़ेफ़ेरो(Zefero)’ नाम दिया गया, और बाद में अंग्रेजी में इसे ‘ज़ीरो(Zero)’ कहा गया।
पश्चिमी गणित में शून्य का परिचय, मध्य युग के दौरान अरबी ग्रंथों(Arabian books) के लैटिन(Latin) भाषा में अनुवाद के माध्यम से हुआ। फिबोनाची को उत्तरी अफ्रीका(North Africa) और मध्य पूर्व की अपनी यात्रा के दौरान, हिंदू-अरबी अंक प्रणाली का अध्ययन करना पड़ा, जिसमें शून्य भी शामिल था। उनकी प्रभावशाली पुस्तक “लिबर अबासी(Liber Abaci)” ने यूरोप में शून्य सहित कुछ अन्य हिंदू-अरबी अंकों के उपयोग को लोकप्रिय बनाने में मदद की। ईसाई धर्म के आगमन के बाद, यूरोप के कुछ धार्मिक नेताओं ने तर्क दिया था कि, चूंकि ईश्वर हर चीज़ में मौजूद है, इसलिए, जो कुछ भी किसी चीज़ का प्रतिनिधित्व नहीं करता है, वह शैतानी होना चाहिए। मानवता को शैतानों से बचाने के प्रयास में, उन्होंने तुरंत ही शून्य को अस्तित्व से मिटा दिया। क्योंकि, यह किसी चीज़ का प्रतिनिधित्व नहीं करता था। हालांकि, फिर भी व्यापारियों ने गुप्त रूप से इसका उपयोग करना जारी रखा।
इसके विपरीत, बौद्ध धर्म में शून्यता की अवधारणा न केवल किसी भी राक्षसी संपत्ति से रहित है, बल्कि, वास्तव में निर्वाण के मार्ग पर, अध्ययन के योग्य एक केंद्रीय विचार भी है। ऐसी मान्यता में, किसी भी चीज़ के लिए गणितीय प्रतिनिधित्व करना या न करना, चिंता की बात नहीं थी। वास्तव में, अंग्रेजी शब्द “जीरो (Zero)” मूल रूप से हिंदी “शून्यता” से लिया गया है, और यह बौद्ध धर्म में एक केंद्रीय अवधारणा है।
सनौबर या बर्च(Birch) की छाल के एक पुराने टुकड़े पर बना एक छोटा सा बिंदु, गणित के इतिहास की सबसे बड़ी घटनाओं में से एक है। दरअसल, इस छाल का उपयोग प्राचीन भारतीय गणितीय दस्तावेज़ – बख्शाली पांडुलिपि के तौर पर किया जाता था। और, वह बिंदु ‘शून्य संख्या’ का पहला ज्ञात उपयोग है। इसके अलावा, ऑक्सफोर्ड विश्वविद्यालय(University of Oxford) के कुछ शोधकर्ताओं ने हाल ही में पाया है कि, यह दस्तावेज़ हमारे कुछ पूर्वानुमान से 500 साल पुराना अर्थात तीसरी या चौथी शताब्दी का है।  आज, शून्य के बिना गणित की कल्पना करना कठिन है। स्थितिगत संख्या प्रणाली जैसे कि, दशमलव प्रणाली में शुन्य अंक का स्थान वास्तव में महत्वपूर्ण है। शून्य के आविष्कार ने संगणनाओं को अत्यंत सरलीकृत कर दिया है, तथा गणितज्ञों को बीजगणित और गणना जैसे महत्वपूर्ण गणितीय विषयों को विकसित करने के लिए मदद की है। और अंततः, यह कंप्यूटर का भी आधार बन गया। शून्य के आविष्कार, अंशों का वर्णन करने में भी सहायक है। किसी संख्या के अंत में शून्य जोड़ने से उसका परिमाण बढ़ जाता है, जबकि, दशमलव बिंदु की सहायता से किसी संख्या के आरंभ में शून्य जोड़ने से उसका परिमाण घट जाता है।



संदर्भ
https://tinyurl.com/pp5u4j5k
https://tinyurl.com/2s46ru6y
https://tinyurl.com/4kw54dd9
https://tinyurl.com/2t7ynwak

चित्र संदर्भ
1. शून्य को संदर्भित करता एक चित्रण (प्रारंग चित्र संग्रह)
2. सांबोर शिलालेख से खमेर अंकों में संख्या 605 (शक युग 605 ईस्वी सन् 683 से मेल खाती है)। इसे दशमलव अंक के रूप में शून्य का सबसे पहला ज्ञात भौतिक उपयोग माना जाता है। को संदर्भित करता एक चित्रण (wikimedia)
3. बख्शाली पांडुलिपि में शून्य को संदर्भित करता एक चित्रण (wikimedia)
4. शून्य के लिए प्रारंभिक यूनानी प्रतीक के उदाहरण को संदर्भित करता एक चित्रण (youtube)
5. शून्य को संदर्भित करता एक चित्रण (needpix)



***Definitions of the post viewership metrics on top of the page:
A. City Subscribers (FB + App) -This is the Total city-based unique subscribers from the Prarang Hindi FB page and the Prarang App who reached this specific post. Do note that any Prarang subscribers who visited this post from outside (Pin-Code range) the city OR did not login to their Facebook account during this time, are NOT included in this total.
B. Website (Google + Direct) -This is the Total viewership of readers who reached this post directly through their browsers and via Google search.
C. Total Viewership —This is the Sum of all Subscribers(FB+App), Website(Google+Direct), Email and Instagram who reached this Prarang post/page.
D. The Reach (Viewership) on the post is updated either on the 6th day from the day of posting or on the completion ( Day 31 or 32) of One Month from the day of posting. The numbers displayed are indicative of the cumulative count of each metric at the end of 5 DAYS or a FULL MONTH, from the day of Posting to respective hyper-local Prarang subscribers, in the city.

RECENT POST

  • होबिनहियन संस्कृति: प्रागैतिहासिक शिकारी-संग्राहकों की अद्भुत जीवनी
    सभ्यताः 10000 ईसापूर्व से 2000 ईसापूर्व

     21-11-2024 09:30 AM


  • अद्वैत आश्रम: स्वामी विवेकानंद की शिक्षाओं का आध्यात्मिक एवं प्रसार केंद्र
    पर्वत, चोटी व पठार

     20-11-2024 09:32 AM


  • जानें, ताज महल की अद्भुत वास्तुकला में क्यों दिखती है स्वर्ग की छवि
    वास्तुकला 1 वाह्य भवन

     19-11-2024 09:25 AM


  • सांस्कृतिक विरासत और ऐतिहासिक महत्व के लिए प्रसिद्ध अमेठी ज़िले की करें यथार्थ सैर
    आधुनिक राज्य: 1947 से अब तक

     18-11-2024 09:34 AM


  • इस अंतर्राष्ट्रीय छात्र दिवस पर जानें, केम्ब्रिज और कोलंबिया विश्वविद्यालयों के बारे में
    वास्तुकला 1 वाह्य भवन

     17-11-2024 09:33 AM


  • क्या आप जानते हैं, मायोटोनिक बकरियाँ और अन्य जानवर, कैसे करते हैं तनाव का सामना ?
    व्यवहारिक

     16-11-2024 09:20 AM


  • आधुनिक समय में भी प्रासंगिक हैं, गुरु नानक द्वारा दी गईं शिक्षाएं
    विचार I - धर्म (मिथक / अनुष्ठान)

     15-11-2024 09:32 AM


  • भारत के सबसे बड़े व्यावसायिक क्षेत्रों में से एक बन गया है स्वास्थ्य देखभाल उद्योग
    विचार 2 दर्शनशास्त्र, गणित व दवा

     14-11-2024 09:22 AM


  • आइए जानें, लखनऊ के कारीगरों के लिए रीसाइकल्ड रेशम का महत्व
    नगरीकरण- शहर व शक्ति

     13-11-2024 09:26 AM


  • वर्तमान उदाहरणों से समझें, प्रोटोप्लैनेटों के निर्माण और उनसे जुड़े सिद्धांतों के बारे में
    शुरुआतः 4 अरब ईसापूर्व से 0.2 करोड ईसापूर्व तक

     12-11-2024 09:32 AM






  • © - 2017 All content on this website, such as text, graphics, logos, button icons, software, images and its selection, arrangement, presentation & overall design, is the property of Indoeuropeans India Pvt. Ltd. and protected by international copyright laws.

    login_user_id