Post Viewership from Post Date to 26-Oct-2020
City Subscribers (FB+App) Website (Direct+Google) Email Instagram Total
3016 489 0 0 3505

This post was sponsored by - "Prarang"

***Scroll down to the bottom of the page for above post viewership metric definitions

एक ऐसी संख्या जिसके नाम गणितज्ञों ने एक पूरा दिवस ही कर दिया: पाई (π)

जौनपुर

 26-09-2020 04:41 AM
विचार 2 दर्शनशास्त्र, गणित व दवा

पाई (π) गणित और विज्ञान की दुनिया में सबसे व्यापक रूप से इस्तेमाल किये जाने वाला स्थिरांक है, जो एक अपरिमेय वास्तविक संख्या है, अर्थात् इसे भिन्न के रूप में व्यक्त नहीं किया जा सकता है। इसे आर्किमिडीज (Archimedes) के स्थिरांक के रूप में भी जाना जाता है। आप पाई के मान को कितना भी विभाजित कीजिये परंतु ये कभी भी पूर्ण रूप से विभाजित नहीं हो सकता है। किंतु इस संख्या में ऐसा क्या खास है, जो हर गणितज्ञ 14 मार्च को पाई (π) दिवस के रूप में मनाते है? संख्याएं तो और भी है, जैसे शून्य को ही ले लिजिये, क्या अपने कभी सुना शून्य दिवस मनाया जाता हो? शायद नहीं। तो चलिये जानते है आखिर क्यों पाई (π) इतनी महत्वपूर्ण है और इसके उपायोग कहां कहां होते हैं?

वास्तव में π किसी भी वृत्त की परिधि और व्यास का अनुपात है, अर्थात ज्यामिती में किसी वृत्त की परिधि की लंबाई और व्यास की लंबाई के अनुपात को पाई कहा जाता है। यह एक अपरिमेय संख्या है और गणितीय अनंत नियंताक है, इसलिए इसे निश्चित भिन्न के रूप में नहीं लिखा जा सकता। इसका मान लगभग 22/7 या 3.14 या 3.14159 के बराबर होता है, इसमें अब तक दशमलव के बाद की पूरी संख्या का आंकलन नहीं किया जा सका है इसलिए इसे अनंत माना जाता है। कंप्यूटर वैज्ञानिकों ने इसके मान (3.14159265358979323 से) की अरबों अंकों की गणना की है, परन्तु फिर भी इसका अंत नहीं मिला, और वे इस गणना को सहस्राब्दी तक भी जारी रखते तो भी वे इसका पूर्ण भिन्न नहीं निकाल पाते। इस वजह से यह एक अंतहीन भिन्न है और इसके दशमलव के बाद के अंकों में दोहराव नहीं होता, इसके अंक किसी भी नियमित पैटर्न को फ़ॉलो नहीं करते है। यह 18वीं शताब्दी के मध्य से ग्रीक अक्षर "π" द्वारा दर्शाया जाता है, और इसे "पाई" के रूप में लिखा जाता है।


प्राचीन समय में जब गणितज्ञों ने स्पष्ट रूप से अपरिमेय संख्याओं की अवधारणा को पाया तो यह उनको विचित्र लगी, वे तो ये तक सोचने लगे की ईश्वर तो सर्वशक्तिमान है परंतु फिर जब ऐसी संख्याएं मौजूद हैं इसका अंत उसको भी नहीं पता तो कैसे वो सर्वज्ञता हो सकता है। खैर इसका पूर्ण भिन्न किसी को पता हो या ना हो परन्तु इतना है कि इस पाई (π) को दुनिया के हर क्षेत्र में उपयोग किया जाता है। यहां तक कि उन जगहों पर भी जहां वृत्त का कोई संबंध नहीं होता है। द्वि-कुण्डलिनी डीएनए के सर्पिल आकार से लेकर आंख की पुतली, प्रकाश और ध्वनि की तरंगों की माप, तथा ब्रह्मांड की स्थिति के रहस्यों को जानने में मदद करने वाले हाइजनबर्ग के अनिश्चितता सिद्धान्त (Heisenberg Uncertainty Principle) तक में इसका उपयोग होता हैं। नदियों के आकार, उसकी वास्तविक लंबाई आदि की गणना भी इसके माध्यम से ही की जाती है।


14 मार्च को पूरे विश्व में पाई (π) दिवस मनाया जाता है। इस दिन को 3, 1, और 4 के रूप में चुना गया था, जो π के पहले तीन महत्वपूर्ण अंक हैं। 2009 के पाई दिवस पर यू. एस. हाउस ऑफ़ रेप्रेजेंटेटिव्स (US House of Representatives) ने इस तिथि को ‘राष्ट्रीय पाई दिवस’ के रूप में स्वीकार किया। 2015 में पाई दिवस विशेष रूप से महत्वपूर्ण था। क्योंकि इस दिन दिनांक और समय ने पाई के कई और अंकों को प्रतिबिंबित किया था। 3/14/15 को 9:26:53 पर पाई के नौ दशमलवीय मान प्राप्त हुये थे यानि 3.141592653। पाई कई तरीकों से अनंतता को प्राप्त करता है। उदाहरण के लिए, एक सूत्र है जिनमें अंतहीन छोटी से छोटी संख्याओं को पाई तक जोड़ा जाता है। इस तरह की खोजी जाने वाली सबसे पहली अनंत श्रृंखला में से एक के अनुसार पाई (π), 1 – 1⁄3 + 1⁄5 – 1⁄7 + 1⁄9 – 1⁄11 +.... के योग के चार गुना के बराबर होता है। यह सभी विषम संख्याओं को पाई (π) से जोड़ता है, इसके अलावा यह संख्या सिद्धांत को वृत्तों और ज्यामिति से भी जोड़ता है।

पाई (π) का प्रयोग सदियों से किया जा रहा है, 2560 ईसा पूर्व बने गीजा की महान पिरामिड के मापन के आधार पर, कुछ मिस्रविद्य मानते हैं कि पिरामिड बनाने वाले π का ज्ञान रखते थे और लगभग 22/7 के मान रखने वाले पिरामिड जान - बूझकर बनाए। अन्य मतों के अनुसार π से सम्बंधित ये सुझाव केवल संयोग है क्योंकि इसका कोई प्रमाण उपलब्द्ध नहीं है कि पिरामिड बनाने वालों को π के बारे में जानकारी थी। इसके बाद पाई के लिखित सन्निकट मिस्र और बाबिल में मिले हैं, ये दोनों माप 1% की शुद्धता के साथ हैं। बाबिल में 1900-1600 ईसा पूर्व की एक मिट्टी की गोली पर ज्यामितीय कथन है कि π का निहित अर्थ 25/8 = 3.125 है। मिस्र में 1650 ईसा पूर्व के आसपास की एक लेखपत्र की प्रतिलिपी है, जिसमें वृत के क्षेत्रफल का सूत्र दिया गया है जो π को (16/9) 2 ≈ 3.16 के रुप में उपयोग करता है। शतपथ ब्राह्मण (4वीं शताब्दी ईसा पूर्व) में एक खगोलीय गणना में भी 339/108≈ 3.139 (9 × 10−4 की सटीकता) की एक आंशिक सन्निकटन का उपयोग किया गया है। इसके अलावा लगभग 150 ईसा पूर्व के एक अन्य भारतीय स्रोत में पाई का उपायोग √10 ≈ 3.1622 के रूप में किया गया है।

पाई की गणना का सर्वप्रथम उल्‍लेखन ग्रीक गणितज्ञ आर्किमिडीज़ द्वारा 250 ईसा पूर्व के आसपास किया गया था। उन्‍होंने एक वृत्‍त के अंदर और बाहर षट्भुज बनाकर, उसके ऊपरी और निचले छोर की गणना की और जब तक वह 96-पक्षों वाले नियमित बहुभुज तक नहीं पहुंच गया, तब तक वे पक्षों की संख्या को दोगुना कर अपने परिक्षण को आगे बढ़ाते रहे। उन्‍होंने इन बहुभुजों की परिधि की गणना करके अंततः यह साबित किया कि 223/71 < π < 22/7 (अर्थात 3.1408 < π < 3.1429) होता है, जो पाई के मान के लगभग बराबर था। सबसे सटीक रूप से, चीनी खगोलविद ज़ू चोंगज़ी द्वारा पाई की गणना की गई थी। 480 ईस्‍वी में पाई का मान ज्ञात करने के लिए चीन के गणितज्ञ ज़ू चोंगज़ी ने 3.1415926 < π < 3.1415927 गणना की और बताया कि π ≈ 355/113= 3.14159292035 तथा π ≈ 22/7 = 3.142857142857...है। इसके लिए, उन्होंने गणितज्ञ लिऊ हुई के सिद्धांत को 12,288 किनारे के बहुभुज पर लागू किया था। भारतीय खगोलशास्त्री आर्यभट्ट ने अपने आर्यभटीय नामक ग्रन्थ में 3.1416 के मान का इस्तेमाल किया।

भारतीय गणित में पाई:

वैदिक काल से ही भारत में विज्ञान, गणित, कला और संस्कृति के विभिन्न क्षेत्रों में खोजे और आविष्कार होते रहे। दुर्भाग्य से, इन खोजों को समय और सुविधाओं के आभाव में सफलताओं के रूप में नहीं देखा गया। भारत में पाई का ज्ञान पहले से ही था, भारतीयों ने सबसे पहले देखा कि किसी वृत्त की परिधि उसके व्यास के अनुपात में बढ़ती है। इसलिए, हमारे पूर्वजों ने यह संबंध स्थापित किया: परिधि/व्यास = स्थिरांक। बस उन्होने इसे पाई के रूप में संबिधित नहीं किया। भारत में शुल्ब सूत्रों (गणितिय गणनाओं का संस्कृत ग्रन्थ) में π को 18 * (3 – 2 √2) = 3.088. के रूप में लिखा गया है। मानव शुल्बसूत्र में भी इसका मान 28/5= 3.125 दिया गया है। इनका उपयोग जैनों से लेकर ब्रह्मगुप्त, श्रीधर और वराहमिहिर जैसे महान लोगों द्वारा भी किया गया है। आर्यभट्ट के साथ, भारत में गणित के एक नए युग की शुरुआत हुई थी। उन्होनें आश्चर्यजनक रूप से 4 दशमलव स्थानों तक पाई का मान दिया था (π = 62832/20000 = 3.1416) जो कि 2 दशमलव स्थानों तक सही था। इसके बाद ही यह मान चीनी और अरब साहित्य में शामिल किए गए थे। कई वर्षों बाद, आर्यभट्ट गणित स्कूल के एक और महान गणितज्ञ, जिसका नाम माधव (1340 ईस्वी) था, उन्होने पाई का मान 2827,4333,8823,3 / 9*1011 दिया था जो 11 दशमलव स्थानों तक सही था। पाई का यह मान अभी भी आधुनिक गणित में उपयोग होता है।

वास्तविक जीवन में पाई के उपयोग

वास्तविक जीवन में पाई के उपयोग में ज्यामिति, विज्ञान, त्रिकोणमिति और प्रकृति, आदि जैसे कई क्षेत्र शामिल हैं। इसका उपयोग सांख्यिकी, उष्मागतिकी, यांत्रिकी, ब्रह्मांड विज्ञान, संख्या सिद्धांत और विद्युत चुंबकत्व आदि मे कई वर्षों से होता आ रहा हैं। कंप्यूटर की सटीकता की जांच भी पाई के माध्यम से ही की जाती है। कुंडली में एस.सी. वोल्टेज मापना हो या त्रिकोणमिति के सवालों का मान प्राप्त करना हो सभी में पाई का उपयोग किया जाता है। यहां तक की समुद्र की लहरों तथा तरंगों की माप, ध्वनि तरंगों की माप, और रेडियोधर्मी कण वितरण आदि में भी इसका उपयोग होता है।

पाई के दैनिक उपयोग के कुछ उदाहरण:
1. इलेक्ट्रिकल इंजीनियरों द्वारा विद्युत अनुप्रयोगों की समस्याओं को हल करने के लिए पाई का उपयोग किया जाता है।
2. आंख की संरचना का अध्ययन करते समय भी इसका उपयोग किया जाता है।
3. डीएनए की संरचना/कार्य को समझने के लिये भी पाई का उपयोग देखने को मिलता है।
4. द्रव तरंगों के व्यवहार समझने वाले भौतिक वैज्ञानिक अपनी गणना में पाई का उपयोग करते हैं।
5. घड़ियों के पेंडुलम डिजाइन करते समय भी पाई का उपयोग किया जाता हैं
6. विमान डिजाइनर पाई का उपयोग विमान के आवरण के क्षेत्र की गणना करने के लिए करते हैं।
7. नेविगेशन में भी पाई का उपयोग किया जाता है।

संदर्भ:
https://en.wikipedia.org/wiki/Pi
https://www.livescience.com/34132-what-makes-pi-special.html
https://souravroy.com/2011/01/07/pi-in-indian-mathematics/
https://www.newyorker.com/tech/annals-of-technology/pi-day-why-pi-matters
https://amazingarchimedes.weebly.com/real-life-application-of-pi.html

चित्र सन्दर्भ :
मुख्य चित्र में पाई का संकेत और उसके ऊपर मुद्रित पाई का आंकिक मान दर्शाया गया है। (Pixabay)
दूसरे चित्र में महान दार्शनिक और गणितज्ञ आर्कमिडीज का व्यक्ति चित्र है। (Wikimedia)
तीसरे चित्र में पाई को संदर्भित करता एक एनीमेशन चित्र है। (Wikipedia)
चौथे चित्र में एक श्यामपट पर पाई का मान लिखा हुआ दिखाई दे रहा है। (Publicdomainpictures)
पांचवें चित्र में वृत की परिधि और व्यास के साथ पाई को समझाया गया है। (Wikimedia)


***Definitions of the post viewership metrics on top of the page:
A. City Subscribers (FB + App) -This is the Total city-based unique subscribers from the Prarang Hindi FB page and the Prarang App who reached this specific post. Do note that any Prarang subscribers who visited this post from outside (Pin-Code range) the city OR did not login to their Facebook account during this time, are NOT included in this total.
B. Website (Google + Direct) -This is the Total viewership of readers who reached this post directly through their browsers and via Google search.
C. Total Viewership —This is the Sum of all Subscribers(FB+App), Website(Google+Direct), Email and Instagram who reached this Prarang post/page.
D. The Reach (Viewership) on the post is updated either on the 6th day from the day of posting or on the completion ( Day 31 or 32) of One Month from the day of posting. The numbers displayed are indicative of the cumulative count of each metric at the end of 5 DAYS or a FULL MONTH, from the day of Posting to respective hyper-local Prarang subscribers, in the city.

RECENT POST

  • नटूफ़ियन संस्कृति: मानव इतिहास के शुरुआती खानाबदोश
    सभ्यताः 10000 ईसापूर्व से 2000 ईसापूर्व

     21-11-2024 09:24 AM


  • मुनस्यारी: पहली बर्फ़बारी और बर्फ़ीले पहाड़ देखने के लिए सबसे बेहतर जगह
    पर्वत, चोटी व पठार

     20-11-2024 09:24 AM


  • क्या आप जानते हैं, लाल किले में दीवान-ए-आम और दीवान-ए-ख़ास के प्रतीकों का मतलब ?
    वास्तुकला 1 वाह्य भवन

     19-11-2024 09:17 AM


  • भारत की ऊर्जा राजधानी – सोनभद्र, आर्थिक व सांस्कृतिक तौर पर है परिपूर्ण
    आधुनिक राज्य: 1947 से अब तक

     18-11-2024 09:25 AM


  • आइए, अंतर्राष्ट्रीय छात्र दिवस पर देखें, मैसाचुसेट्स इंस्टिट्यूट ऑफ़ टेक्नोलॉजी के चलचित्र
    वास्तुकला 1 वाह्य भवन

     17-11-2024 09:25 AM


  • आइए जानें, कौन से जंगली जानवर, रखते हैं अपने बच्चों का सबसे ज़्यादा ख्याल
    व्यवहारिक

     16-11-2024 09:12 AM


  • आइए जानें, गुरु ग्रंथ साहिब में वर्णित रागों के माध्यम से, इस ग्रंथ की संरचना के बारे में
    विचार I - धर्म (मिथक / अनुष्ठान)

     15-11-2024 09:19 AM


  • भारतीय स्वास्थ्य प्रणाली में, क्या है आर्टिफ़िशियल इंटेलिजेंस और चिकित्सा पर्यटन का भविष्य
    विचार 2 दर्शनशास्त्र, गणित व दवा

     14-11-2024 09:15 AM


  • क्या ऊन का वेस्ट बेकार है या इसमें छिपा है कुछ खास ?
    नगरीकरण- शहर व शक्ति

     13-11-2024 09:17 AM


  • डिस्क अस्थिरता सिद्धांत करता है, बृहस्पति जैसे विशाल ग्रहों के निर्माण का खुलासा
    शुरुआतः 4 अरब ईसापूर्व से 0.2 करोड ईसापूर्व तक

     12-11-2024 09:25 AM






  • © - 2017 All content on this website, such as text, graphics, logos, button icons, software, images and its selection, arrangement, presentation & overall design, is the property of Indoeuropeans India Pvt. Ltd. and protected by international copyright laws.

    login_user_id